暈,打了我10來個小時·~·#~!·謝謝大家給面子看啊~ |原創(chuàng)|復習 一、數(shù)與代數(shù) A:數(shù)與式:1:有理數(shù) 有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù) ②分數(shù)→正分數(shù)/負分數(shù) 數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。 ③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。 ④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。
正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。 絕對值:①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他本身/負數(shù)的絕對值是他的相反數(shù)/0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。 減法: 減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。
③乘積為1的兩個有理數(shù)互為倒數(shù)。 除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。 乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。 2:實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù) 平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。 立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)/0的立方根是0/負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。 3:代數(shù)式 代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 4:整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。 冪的運算:AM。
AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一樣。
A0=1,A-P=1/AP 整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式 方法:提公因式法/運用公式法/分組分解法/十字相乘法 分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。 分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。 加減法:①同分母的分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。 分式方程:①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。 B:方程與不等式 1:方程與方程組 一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。 二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,。
有理數(shù)的加法運算 同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。 互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對值的大小。 有理數(shù)的減法運算 減正等于加負,減負等于加正。
有理數(shù)的乘法運算符號法則 同號得正異號負,一項為零積是零。 合并同類項 說起合并同類項,法則千萬不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。 去、添括號法則 去括號或添括號,關(guān)鍵要看連接號。
擴號前面是正號,去添括號不變號。 括號前面是負號,去添括號都變號。
解方程 已知未知鬧分離,分離要靠移完成。 移加變減減變加,移乘變除除變乘。
平方差公式 兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。 積化和差變兩項,完全平方不是它。
完全平方公式 二數(shù)和或差平方,展開式它共三項。 首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。 解一元一次方程 先去分母再括號,移項變號要記牢。
同類各項去合并,系數(shù)化“1”還沒好。 求得未知須檢驗,回代值等才算了。
解一元一次方程 先去分母再括號,移項合并同類項。 系數(shù)化1還沒好,準確無誤不白忙。
因式分解與乘法 和差化積是乘法,乘法本身是運算。 積化和差是分解,因式分解非運算。
因式分解 兩式平方符號異,因式分解你別怕。 兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號同,底積2倍坐中央。 因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。 同正則正負就負,異則需添冪符號。
因式分解 一提二套三分組,十字相乘也上數(shù)。 四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數(shù)。 多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項添項去重組。 對癥下藥穩(wěn)又準,連乘結(jié)果是基礎(chǔ)。
二次三項式的因式分解 先想完全平方式,十字相乘是其次。 兩種方法行不通,求根分解去嘗試。
比和比例 兩數(shù)相除也叫比,兩比相等叫比例。 外項積等內(nèi)項積,等積可化八比例。
分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。 同時交換內(nèi)外項,便要稱其為反比。
前后項和比后項,比值不變叫合比。 前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。 前項和比后項和,比值不變叫等比。
解比例 外項積等內(nèi)項積,列出方程并解之。 求比值 由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。 消元也是好辦法,殊途同歸會變通。
正比例與反比例 商定變量成正比,積定變量成反比。 正比例與反比例 變化過程商一定,兩個變量成正比。
變化過程積一定,兩個變量成反比。 判斷四數(shù)成比例 四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。 判斷四式成比例 四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。 比例中項 成比例的四項中,外項相同會遇到。
有時內(nèi)項會相同,比例中項少不了。 比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。 有時內(nèi)項會相同,比例中項出現(xiàn)了。
同數(shù)平方等異積,比例中項無處逃。 根式與無理式 表示方根代數(shù)式,都可稱其為根式。
根式異于無理式,被開方式無限制。 被開方式有字母,才能稱為無理式。
無理式都是根式,區(qū)分它們有標志。 被開方式有字母,又可稱為無理式。
求定義域 求定義域有講究,四項原則須留意。 負數(shù)不能開平方,分母為零無意義。
指是分數(shù)底正數(shù),數(shù)零沒有零次冪。 限制條件不唯一,滿足多個不等式。
求定義域要過關(guān),四項原則須注意。 負數(shù)不能開平方,分母為零無意義。
分數(shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。 限制條件不唯一,不等式組求解集。
解一元一次不等式 先去分母再括號,移項合并同類項。 系數(shù)化“1”有講究,同乘除負要變向。
先去分母再括號,移項別忘要變號。 同類各項去合并,系數(shù)化“1”注意了。
同乘除正無防礙,同乘除負也變號。 解一元一次不等式組 大于頭來小于尾,大小不一中間找。
大大小小沒有解,四種情況全來了。 同向取兩邊,異向取中間。
中間無元素,無解便出現(xiàn)。 幼兒園小鬼當家,(同小相對取較?。? 敬老院以老為榮,(同大就要取較大) 軍營里沒老沒少。
(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,構(gòu)造函數(shù)第二站。
判別式值若非負,曲線橫軸有交點。 a正開口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點數(shù)之間。 方程若無實數(shù)根,口上大零解為全。
小于零將沒有解,開口向下正相反。 用平方差公式因式分解 異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結(jié)果就是它。 用完全平方公式因式分解 兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數(shù)。 分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數(shù)。 一平方又一平方,底積2倍在中路。
常見的初中數(shù)學公式 1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯角相等,兩直線平行 11 同旁內(nèi)角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯角相等 14 兩直線平行,同旁內(nèi)角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角 21 全等三角形的對應(yīng)邊、對應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線 44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360° 49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)*180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個角都是直角 61矩形性質(zhì)定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=(a*b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71定理1 關(guān)于中心對稱的兩個圖形是全等的 72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關(guān)于這一點對稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直。
有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分數(shù)→正分數(shù)/負分數(shù)數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。
正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。絕對值:①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:。
代數(shù)部分:有理數(shù)、無理數(shù)、實數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。
1、實數(shù)的分類有理數(shù):整數(shù)(包括:正整數(shù)、0、負整數(shù))和分數(shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:-3,,0.231,0.737373。
無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,-,0.1010010001。(兩個1之間依次多1個0)。
實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。 2、無理數(shù)在理解無理數(shù)時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數(shù);二是不循環(huán).二者缺一不可.歸納起來有四類:(1)開方開不盡的數(shù),如等;(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001。
等;(4)某些三角函數(shù),如sin60o等。注意:判斷一個實數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標準.3、非負數(shù):正實數(shù)與零的統(tǒng)稱。
(表為:x≥0)常見的非負數(shù)有: 性質(zhì):若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。4、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸("三要素")。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
作用:A.直觀地比較實數(shù)的大??;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應(yīng)關(guān)系。5、相反數(shù)實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱, 如果a與b互為相反數(shù), 則有a+b=0,a=-b,反之亦成立。
即:(1)實數(shù)的相反數(shù)是。(2)和互為相反數(shù)。
擴展資料:科學記數(shù)法把一個數(shù)寫做的形式,其中,n是整數(shù),這種記數(shù)法叫做科學記數(shù)法。(1)確定:是只有一位整數(shù)數(shù)位的數(shù)。
(2)確定n:當原數(shù)≥1時,等于原數(shù)的整數(shù)位數(shù)減1;;當原數(shù)<1時,是負整數(shù),它的絕對值等于原數(shù)中左起第一個非零數(shù)字前零的個數(shù)(含整數(shù)位上的零)。例如:-40700=-4.07*105,0.000043=4.3*10ˉ5。
(3)近似值的精確度:一般地,一個近似數(shù),四舍五入到哪一位,就說這個近似數(shù)精確到哪一位(4)按精確度或有效數(shù)字取近似值,一定要與科學計數(shù)法有機結(jié)合起來。
初中數(shù)學知識點總結(jié) 一、基本知識 一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分數(shù)→正分數(shù)/負分數(shù) 數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。
正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。 絕對值:①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。 減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。
③乘積為1的兩個有理數(shù)互為倒數(shù)。 除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。 乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。 2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù) 平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。 立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。 3、代數(shù)式 代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 4、整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。 冪的運算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。 分式的運算: 乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。 加減法:①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。 分式方程:①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。 B、方程與不等式 1、方程與方程組 一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。 二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。 二元。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:3.555秒