只有五個(gè)
一 集合與簡(jiǎn)易邏輯
集合具有四個(gè)性質(zhì) 廣泛性 集合的元素什么都可以
確定性 集合中的元素必須是確定的,比如說(shuō)是好學(xué)生就不具有這種性質(zhì),因?yàn)樗母拍钍悄:磺宓?/p>
互異性 集合中的元素必須是互不相等的,一個(gè)元素不能重復(fù)出現(xiàn)
無(wú)序性 集合中的元素與順序無(wú)關(guān)
二 函數(shù)
這是個(gè)重點(diǎn),但是說(shuō)起來(lái)也不好說(shuō),要作專題訓(xùn)練,比如說(shuō)二次函數(shù),指數(shù)對(duì)數(shù)函數(shù)等等做這一類型題的時(shí)候,要掌握幾個(gè)函數(shù)思想如 構(gòu)造函數(shù) 函數(shù)與方程結(jié)合 對(duì)稱思想,換元等等
三 數(shù)列
這也是個(gè)比較重要的題型,做體的時(shí)候要有整體思想,整體代換,等比等差要分開來(lái),也要注意聯(lián)系,這樣才能做好,注意觀察數(shù)列的形式判斷是什么數(shù)列,還要掌握求數(shù)列通向公式的幾種方法,和求和公式,求和方法,比如裂項(xiàng)相消,錯(cuò)位相減,公式法,分組求和法等等
四 三角函數(shù)
三角函數(shù)不是考試題型,只是個(gè)應(yīng)用的知識(shí)點(diǎn),所以只要記熟特殊角的三角函數(shù)值和一些重要的定理就行
五 平面向量
這是個(gè)比較抽象的把幾何與代數(shù)結(jié)合起來(lái)的重難點(diǎn),結(jié)體的時(shí)候要有技巧,主要就是把基本知識(shí)掌握到位,注意拓展,另外要多做題,見的題型多,結(jié)體的時(shí)候就有思路,能夠把問(wèn)題簡(jiǎn)單化,有利于提高做題效率
高一的數(shù)學(xué)只是入門,只要把基礎(chǔ)的掌握了,做題就沒(méi)什么大問(wèn)題了,數(shù)學(xué)就可以上130
乘法與因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b^2-4ac=0 注:方程有兩個(gè)相等的實(shí)根 b^2-4ac>0 注:方程有兩個(gè)不等的實(shí)根 b^2-4ac0 拋物線標(biāo)準(zhǔn)方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h 正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h' 圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l 弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長(zhǎng) 柱體體積公式 V=s*h 圓柱體 V=pi*r2h 定理: 1 過(guò)兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 作者:塵世的Angel 2008-11-22 22:48 回復(fù)此發(fā)言 --------------------------------------------------------------------------------2 高中數(shù)學(xué)公式 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的垂直平分線可看。
總體分為十四個(gè)部分 一·集合與一些簡(jiǎn)單的邏輯關(guān)系里面重要的是‘含絕對(duì)值的不等式及一元二次不等式的解法’,一定要搞透徹,其他的了解然后明白一切就行 二·函數(shù) 1·函數(shù)的定義與性質(zhì),重要的是千萬(wàn)要記住它的定義域,還有的就是會(huì)用其性質(zhì)。
2·一些特定的函數(shù)有反函數(shù),二次函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù)。3·函數(shù)的圖像問(wèn)題以及函數(shù)的應(yīng)用,一定要會(huì)數(shù)形結(jié)合法去解題 三·數(shù)列 1·數(shù)列的概念 2·等差數(shù)列及其性質(zhì) 3·等比數(shù)列及其性質(zhì) 4·數(shù)列的綜合應(yīng)用 重點(diǎn)是那兩個(gè)數(shù)列等差與等比的性質(zhì) 四·三角函數(shù) 1·任意的三角函數(shù) 2·三角函數(shù)的誘導(dǎo)公式 3·正余弦和正余切 5二倍角的一些公式 6·三角函數(shù)的圖像及其性質(zhì) 這一部分很重要全國(guó)一卷第一個(gè)大題就是與三角函數(shù)有關(guān)的 五·平面向量 1.平面向量的概念及運(yùn)算 2.基本定理和坐標(biāo)表示 3.數(shù)量積 4.接三角形及其應(yīng)用 5.最后是綜合的應(yīng)用 這一部分就是用于三角或是坐標(biāo)的計(jì)算一般會(huì)在大題的第一問(wèn) 六·不等式 1.不等式的概念與性質(zhì) 2.證明 3.解法 4.含絕對(duì)值的不等式 5.綜合應(yīng)用 這一節(jié)要好好學(xué) 七·直線與圓的方程 1.直線的方程 2.兩直線的位置關(guān)系 3.簡(jiǎn)單的線性規(guī)劃 4.曲線與方程 5.圓及直線與園的位置關(guān)系 這是下一部分的基礎(chǔ) 八·解析幾何(就是圓錐曲線方程) 1.橢圓 2.雙曲線 3.拋物線 4.直線與雙曲線的位置關(guān)系 5.軌跡問(wèn)題 重點(diǎn)是搞明白圓錐曲線的那兩個(gè)定義,尤其是第二定義,通常根據(jù)那個(gè)去求軌跡方程 九·直線平面和簡(jiǎn)單幾何題(立體幾何) 1.平面空間兩條直線 2.直線平面平行的判斷及性質(zhì) 3.直線平面垂直的判斷及性質(zhì) 4.空間中的角與距離 5.棱柱與棱錐 6.多面體與球 7.空間向量及其運(yùn)算 8.空間向量的坐標(biāo)運(yùn)算 這一節(jié)肯定會(huì)有一個(gè)大題,還會(huì)有別的小題 十·排列組合與概率 1.各種式子的應(yīng)用 2.二項(xiàng)式定理 3.隨機(jī)事件的概率 4.互斥事件 5.相互獨(dú)立事件 這個(gè)也會(huì)有一個(gè)題 十一·概率與統(tǒng)計(jì) 1.離散型隨機(jī)變量的分布列 2.離散型隨機(jī)變量的期望與方差 3.抽樣方法與總體分布的估計(jì) 4.正態(tài)分布與線性回歸 這一節(jié)也會(huì)有一個(gè)大題 十二·極限 1.數(shù)學(xué)極限歸納法 2.數(shù)列的極限 3.函數(shù)的極限與函數(shù)的連續(xù)性 十三·導(dǎo)數(shù) 導(dǎo)數(shù)的概念運(yùn)算與應(yīng)用 一般會(huì)用于函數(shù)的單調(diào)性 十四·復(fù)數(shù) 會(huì)有一個(gè)小題。
中學(xué)里數(shù)學(xué)的思想方法是解決數(shù)學(xué)問(wèn)題的精髓,主要有數(shù)學(xué)思想:函數(shù)與方程的思想(非函數(shù)方程問(wèn)題轉(zhuǎn)化為函數(shù)方程形式,并運(yùn)用函數(shù)方程的有關(guān)意義、性質(zhì)去解決問(wèn)題)。
數(shù)形結(jié)合的思想(根據(jù)數(shù)的結(jié)構(gòu)特征、構(gòu)造出與三相適應(yīng)的幾何圖形,并利用形的特征和規(guī)律,解決數(shù)的問(wèn)題或反之)。 分類討論的思想(根據(jù)數(shù)學(xué)對(duì)象的本質(zhì)屬性將對(duì)象區(qū)分為不同種類,然后按類逐一進(jìn)行運(yùn)算,從而得到解決整個(gè)問(wèn)題的目的)。
轉(zhuǎn)化、化歸思想(在解決數(shù)學(xué)問(wèn)題時(shí)直接將不易解決的問(wèn)題轉(zhuǎn)化成新的相關(guān)一些問(wèn)題或熟悉的問(wèn)題去加以解決)等。 數(shù)學(xué)方法:分析法、綜合法、歸納法、換元法、定義法、構(gòu)造法、對(duì)稱法、整體把握法等等。
在各個(gè)具體數(shù)學(xué)內(nèi)容中又有各種具體的思想方法,例如在求軌跡時(shí)有直接法、轉(zhuǎn)移法(或叫代入法)、參數(shù)法、定義法等。 考前讀要: 1、強(qiáng)調(diào)集合元素互異性,例如A={0,1,x2,-x}則x不能取哪些實(shí)數(shù)?(答:x≠ 0,x≠1,x≠(1±√5)/2 {y=x2 y=x+2 } 。
12、求解直線和圓的方程時(shí),應(yīng)根據(jù)特點(diǎn)合理選用方程形式,并注意各種方程形式的限制,防止漏解。 13、直線和圓是平幾研究的主要對(duì)象,要善于運(yùn)用平幾知識(shí)解決有關(guān)直線和圓的問(wèn)題。
如:直線和圓的位置關(guān)系的判定,直線截圓所得的弦長(zhǎng)等,均可轉(zhuǎn)化為圓心到直線的距離去解。 14、圓錐曲線定義的靈活運(yùn)用。
(與焦點(diǎn)有關(guān)選擇,填空題常常用到)注意應(yīng)用圓錐曲線統(tǒng)一定義解決未確定圓錐曲線是橢圓、雙曲線、拋物線問(wèn)題。 15、確定圓錐曲線標(biāo)準(zhǔn)議程別忘了標(biāo)準(zhǔn)方程的多個(gè)性,運(yùn)用的重要方法是待定系數(shù)法。
16、問(wèn)什么是等軸雙曲線?而雙曲線的共軛雙曲線方程是什么? 17、直線與圓錐曲線位置關(guān)系。 ①公共點(diǎn)的個(gè)數(shù):聯(lián)立方程組消元(消x還是y)→一元方程②截得弦長(zhǎng):直線參數(shù)方程法,投影法(靈活運(yùn)用韋達(dá)定理)。
18、求軌跡,軌跡方程別忘了限制條件的尋找。 19、注意充分運(yùn)用平面向量的方法解析幾何的問(wèn)題。
例如:2003年江蘇省高考題第20題(文壓?jiǎn)栴})。 20、體積法求距離的公式:(d為A到面BCD的距離,V為三棱錐A-BCD之體積,S為△BCD之面積。
求體積V時(shí)常用頂點(diǎn)轉(zhuǎn)移法,或割補(bǔ)法。 21、了解:多面體的歐拉公式:F+V=E+2,可用三棱錐去驗(yàn)一下。
解集,不是{—1,1,2,4},又如:A={x│x=t2,t∈R}B={y│y=lgx2,x≠0}則A∩B{x│x≥0}∩R=[0,+∞)(實(shí)際上A、B分別表示函數(shù)的值域)。 2、一函數(shù)分別在(-∞,—1)],[1,+∞)上單調(diào)遞增,不能記作這函數(shù)在shuxue07.jpgrshuxue07.jpgshuxue07.jpgr上單調(diào)遞增,并非在R上是減函數(shù),也并非為增函數(shù)。
3、函數(shù)的奇偶性是對(duì)整個(gè)定義域而言的,因此判斷一函數(shù)的奇偶性,必先確定其定義域是否關(guān)于原點(diǎn)中心對(duì)稱,然后再用f(-x)=f(x)(或f(-x)-f(x)=0),f(-x)=-f(x)(或f(-x)+f(x)=0)判斷。 4、掌握函數(shù)圖像的三種變換:(1)平移,(2)伸縮,(3)對(duì)稱,尤其應(yīng)注意絕對(duì)值符號(hào)對(duì)函數(shù)圖像的影響。
例如shuxue12.jpgrshuxue12.jpgshuxue12.jpgr的圖像如(1),則y=|f(x)|,y=f(|x|),y=|f(|x|)|,y=|f(x)+1|,y=|f(x-1)|的圖像分別如何? 5、函數(shù)f(x)定義在R上,(1)若f(a-x)=f(a+x)則y=f(x)的圖像關(guān)于直線x=a軸對(duì)稱, (2)若f(x)+f(2a-x)=2b,則y=f(x)的圖像關(guān)于點(diǎn)(a,b)中心對(duì)稱。 6、理解并會(huì)運(yùn)用公式:{an}等差:(1)若m+n=p+q(m,n,p,q∈N*),則am+an=ap+aq (特別地當(dāng)m=1時(shí)ap+an+1-p=a1+an,即到首末“等距離”項(xiàng)之和等于首末兩項(xiàng)之和) (2)S2n-1=(2n-1)an。
{an}為等比:則若m+n=p+q(m,n,p,q∈N*),則am·an=ap·aq。 7、求數(shù)列和:x+x2+x3+…xn時(shí)應(yīng)對(duì)公比q=1或q≠1進(jìn)行討論,即8、在進(jìn)行三角函數(shù)式的運(yùn)算時(shí)應(yīng)注意shuxue15.jpgrshuxue15.jpgshuxue15.jpgr(即1的逆用),shuxue16.jpgrshuxue16.jpgshuxue16.jpgr注意公式之變形運(yùn)用,shuxue17.jpgrshuxue17.jpgshuxue17.jpgrshuxue17.jpgrshuxue17.jpgshuxue17.jpgr,注意角之變形式:shuxue18.jpgrshuxue18.jpgshuxue18.jpgrshuxue19.jpgrshuxue19.jpgshuxue19.jpgr。
9、的圖像是由y=sin2x的圖像經(jīng)過(guò)向左平移shuxue21.jpgrshuxue21.jpgshuxue21.jpgr而得。 10、求的單調(diào)遞增區(qū)間時(shí)的一般應(yīng)先利用誘導(dǎo)公式,使x系數(shù)為正即,然后再對(duì)求單調(diào)區(qū)間。
11、理解導(dǎo)數(shù)的幾何意義,f(x0)就是曲線y=f(x)在點(diǎn)(xo,f(xo)處的切線的斜率,而s,(t0)是t0時(shí)的運(yùn)動(dòng)瞬間速度,v,(t0)是t0時(shí)的加速度,在新高考題2002年20題,2002年(文)21題,2003年(文)18題等方面均有反映。導(dǎo)數(shù)在求函數(shù)單調(diào)性、函數(shù)最值、及證不等式方面的運(yùn)用也較廣泛,見新高考題2003年19題,2001年(文)21題,2000年第20題,2003年第21題等,不妨記一下下題:已知 1±√52 {y=x2 y=x+2}。
12、求解直線和圓的方程時(shí),應(yīng)根據(jù)特點(diǎn)合理選用方程形式,并注意各種方程形式的限制,防止漏解。 13、直線和圓是平幾研究的主要對(duì)象,要善于運(yùn)用平幾知識(shí)解決有關(guān)直線和圓的問(wèn)題。
如:直線和圓的位置關(guān)系的判定,直線截圓所得的弦長(zhǎng)等,均可轉(zhuǎn)化為圓心到直線的距離去解。 14、圓錐曲線定義的靈活運(yùn)用。
(與焦點(diǎn)有關(guān)選擇,填空題常常用到)注意應(yīng)用圓錐曲線統(tǒng)一定義解決未確定圓錐曲線是橢圓、雙曲線、。
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析一、集合與簡(jiǎn)易邏輯1.集合的元素具有確定性、無(wú)序性和互異性.2.對(duì)集合 , 時(shí),必須注意到“極端”情況: 或 ;求集合的子集時(shí)是否注意到 是任何集合的子集、是任何非空集合的真子集.3.對(duì)于含有 個(gè)元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個(gè)數(shù)依次為 4.“交的補(bǔ)等于補(bǔ)的并,即 ”;“并的補(bǔ)等于補(bǔ)的交,即 ”.5.判斷命題的真假 關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”.7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”.原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià).反證法分為三步:假設(shè)、推矛、得果.注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結(jié)論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” ?.8.充要條件二、函 數(shù)1.指數(shù)式、對(duì)數(shù)式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合 中的元素必有像,但第二個(gè)集合 中的元素不一定有原像( 中元素的像有且僅有下一個(gè),但 中元素的原像可能沒(méi)有,也可任意個(gè));函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集 的子集”.(2)函數(shù)圖像與 軸垂線至多一個(gè)公共點(diǎn),但與 軸垂線的公共點(diǎn)可能沒(méi)有,也可任意個(gè).(3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像.3.單調(diào)性和奇偶性(1)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同.偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反.注意:(1)確定函數(shù)的奇偶性,務(wù)必先判定函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱.確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等.對(duì)于偶函數(shù)而言有: .(2)若奇函數(shù)定義域中有0,則必有 .即 的定義域時(shí), 是 為奇函數(shù)的必要非充分條件.(3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導(dǎo)數(shù)法;在選擇、填空題中還有:數(shù)形結(jié)合法(圖像法)、特殊值法等等.(4)既奇又偶函數(shù)有無(wú)窮多個(gè)( ,定義域是關(guān)于原點(diǎn)對(duì)稱的任意一個(gè)數(shù)集).(7)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”.復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”.復(fù)合函數(shù)要考慮定義域的變化。
(即復(fù)合有意義)4.對(duì)稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)(1)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱.推廣一:如果函數(shù) 對(duì)于一切 ,都有 成立,那么 的圖像關(guān)于直線 (由“ 和的一半 確定”)對(duì)稱.推廣二:函數(shù) , 的圖像關(guān)于直線 (由 確定)對(duì)稱.(2)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱.(3)函數(shù) 與函數(shù) 的圖像關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱.推廣:曲線 關(guān)于直線 的對(duì)稱曲線是 ;曲線 關(guān)于直線 的對(duì)稱曲線是 .(5)類比“三角函數(shù)圖像”得:若 圖像有兩條對(duì)稱軸 ,則 必是周期函數(shù),且一周期為 .如果 是R上的周期函數(shù),且一個(gè)周期為 ,那么 .特別:若 恒成立,則 .若 恒成立,則 .若 恒成立,則 .三、數(shù) 列1.數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前 項(xiàng)和公式的關(guān)系: (必要時(shí)請(qǐng)分類討論).注意: ; .2.等差數(shù)列 中:(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性.(2) ; .(3) 、也成等差數(shù)列.(4)兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列.(5) 仍成等差數(shù)列.(8)“首正”的遞等差數(shù)列中,前 項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前 項(xiàng)和的最小值是所有非正項(xiàng)之和;(9)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”-“奇數(shù)項(xiàng)和”=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”-“偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng).(10)兩數(shù)的等差中項(xiàng)惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解.(11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說(shuō)數(shù)列是等差數(shù)列的充要條件主要有這五種形式).3.等比數(shù)列 中:(1)等比數(shù)列的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性.(3) 、、成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列.(4)兩等比數(shù)列對(duì)應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列.(8)“首大于1”的正值遞減等比數(shù)列中,前 項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前 項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;(9)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”=“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和.(10)并非任何兩數(shù)總有等比中項(xiàng).僅當(dāng)實(shí)數(shù) 同號(hào)時(shí),實(shí)數(shù) 存在等比中項(xiàng).對(duì)同號(hào)兩實(shí)數(shù) 的等比中項(xiàng)不僅存在,而且。
1.集合元素具有①確定性②互異性③無(wú)序性 2.集合表示方法①列舉法 ②描述法 ③韋恩圖 ④數(shù)軸法 3.集合的運(yùn)算 ⑴ A∩(B∪C)=(A∩B)∪(A∩C) ⑵ Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 4.集合的性質(zhì) ⑴n元集合的子集數(shù):2n 真子集數(shù):2n-1;非空真子集數(shù):2n-2 高中數(shù)學(xué)概念總結(jié) 一、函數(shù) 1、若集合A中有n 個(gè)元素,則集合A的所有不同的子集個(gè)數(shù)為 ,所有非空真子集的個(gè)數(shù)是 。
二次函數(shù) 的圖象的對(duì)稱軸方程是 ,頂點(diǎn)坐標(biāo)是 。用待定系數(shù)法求二次函數(shù)的解析式時(shí),解析式的設(shè)法有三種形式,即 , 和 (頂點(diǎn)式)。
2、冪函數(shù) ,當(dāng)n為正奇數(shù),m為正偶數(shù),m<n時(shí),其大致圖象是 3、函數(shù) 的大致圖象是 由圖象知,函數(shù)的值域是 ,單調(diào)遞增區(qū)間是 ,單調(diào)遞減區(qū)間是 。 二、三角函數(shù) 1、以角 的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸正半軸建立直角坐標(biāo)系,在角 的終邊上任取一個(gè)異于原點(diǎn)的點(diǎn) ,點(diǎn)P到原點(diǎn)的距離記為 ,則sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。
2、同角三角函數(shù)的關(guān)系中,平方關(guān)系是: , , ; 倒數(shù)關(guān)系是: , , ; 相除關(guān)系是: , 。 3、誘導(dǎo)公式可用十個(gè)字概括為:奇變偶不變,符號(hào)看象限。
如: , = , 。 4、函數(shù) 的最大值是 ,最小值是 ,周期是 ,頻率是 ,相位是 ,初相是 ;其圖象的對(duì)稱軸是直線 ,凡是該圖象與直線 的交點(diǎn)都是該圖象的對(duì)稱中心。
5、三角函數(shù)的單調(diào)區(qū)間: 的遞增區(qū)間是 ,遞減區(qū)間是 ; 的遞增區(qū)間是 ,遞減區(qū)間是 , 的遞增區(qū)間是 , 的遞減區(qū)間是 。 6、7、二倍角公式是:sin2 = cos2 = = = tg2 = 。
8、三倍角公式是:sin3 = cos3 = 9、半角公式是:sin = cos = tg = = = 。 10、升冪公式是: 。
11、降冪公式是: 。 12、萬(wàn)能公式:sin = cos = tg = 13、sin( )sin( )= , cos( )cos( )= = 。
14、= ; = ; = 。 15、= 。
16、sin180= 。 17、特殊角的三角函數(shù)值: 0 sin 0 1 0 cos 1 0 0 tg 0 1 不存在 0 不存在 ctg 不存在 1 0 不存在 0 18、正弦定理是(其中R表示三角形的外接圓半徑): 19、由余弦定理第一形式, = 由余弦定理第二形式,cosB= 20、△ABC的面積用S表示,外接圓半徑用R表示,內(nèi)切圓半徑用r表示,半周長(zhǎng)用p表示則: ① ;② ; ③ ;④ ; ⑤ ;⑥ 21、三角學(xué)中的射影定理:在△ABC 中, ,… 22、在△ABC 中, ,… 23、在△ABC 中: 24、積化和差公式: ① , ② , ③ , ④ 。
25、和差化積公式: ① , ② , ③ , ④ 。 三、反三角函數(shù) 1、的定義域是[-1,1],值域是 ,奇函數(shù),增函數(shù); 的定義域是[-1,1],值域是 ,非奇非偶,減函數(shù); 的定義域是R,值域是 ,奇函數(shù),增函數(shù); 的定義域是R,值域是 ,非奇非偶,減函數(shù)。
2、當(dāng) ; 對(duì)任意的 ,有: 當(dāng) 。 3、最簡(jiǎn)三角方程的解集: 四、不等式 1、若n為正奇數(shù),由 可推出 嗎? ( 能 ) 若n為正偶數(shù)呢? ( 均為非負(fù)數(shù)時(shí)才能) 2、同向不等式能相減,相除嗎 (不能) 能相加嗎? ( 能 ) 能相乘嗎? (能,但有條件) 3、兩個(gè)正數(shù)的均值不等式是: 三個(gè)正數(shù)的均值不等式是: n個(gè)正數(shù)的均值不等式是: 4、兩個(gè)正數(shù) 的調(diào)和平均數(shù)、幾何平均數(shù)、算術(shù)平均數(shù)、均方根之間的關(guān)系是 6、雙向不等式是: 左邊在 時(shí)取得等號(hào),右邊在 時(shí)取得等號(hào)。
五、數(shù)列 1、等差數(shù)列的通項(xiàng)公式是 ,前n項(xiàng)和公式是: = 。 2、等比數(shù)列的通項(xiàng)公式是 , 前n項(xiàng)和公式是: 3、當(dāng)?shù)缺葦?shù)列 的公比q滿足 <1時(shí), =S= 。
一般地,如果無(wú)窮數(shù)列 的前n項(xiàng)和的極限 存在,就把這個(gè)極限稱為這個(gè)數(shù)列的各項(xiàng)和(或所有項(xiàng)的和),用S表示,即S= 。 4、若m、n、p、q∈N,且 ,那么:當(dāng)數(shù)列 是等差數(shù)列時(shí),有 ;當(dāng)數(shù)列 是等比數(shù)列時(shí),有 。
5、等差數(shù)列 中,若Sn=10,S2n=30,則S3n=60; 6、等比數(shù)列 中,若Sn=10,S2n=30,則S3n=70; 六、復(fù)數(shù) 1、怎樣計(jì)算?(先求n被4除所得的余數(shù), ) 2、是1的兩個(gè)虛立方根,并且: 3、復(fù)數(shù)集內(nèi)的三角形不等式是: ,其中左邊在復(fù)數(shù)z1、z2對(duì)應(yīng)的向量共線且反向(同向)時(shí)取等號(hào),右邊在復(fù)數(shù)z1、z2對(duì)應(yīng)的向量共線且同向(反向)時(shí)取等號(hào)。 4、棣莫佛定理是: 5、若非零復(fù)數(shù) ,則z的n次方根有n個(gè),即: 它們?cè)趶?fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在分布上有什么特殊關(guān)系? 都位于圓心在原點(diǎn),半徑為 的圓上,并且把這個(gè)圓n等分。
6、若 ,復(fù)數(shù)z1、z2對(duì)應(yīng)的點(diǎn)分別是A、B,則△AOB(O為坐標(biāo)原點(diǎn))的面積是 。 7、= 。
8、復(fù)平面內(nèi)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的幾個(gè)基本軌跡: ① 軌跡為一條射線。 ② 軌跡為一條射線。
③ 軌跡是一個(gè)圓。 ④ 軌跡是一條直線。
⑤ 軌跡有三種可能情形:a)當(dāng) 時(shí),軌跡為橢圓;b)當(dāng) 時(shí),軌跡為一條線段;c)當(dāng) 時(shí),軌跡不存在。 ⑥ 軌跡有三種可能情形:a)當(dāng) 時(shí),軌跡為雙曲線;b) 當(dāng) 時(shí),軌跡為兩條射線;c) 當(dāng) 時(shí),軌跡不存在。
七、排列組合、二項(xiàng)式定理 1、加法原理、乘法原理各適用于什么情形?有什么特點(diǎn)? 加法分類,類類獨(dú)立;乘法分步,步步相關(guān)。 2、排列數(shù)公式是: = = ; 排列數(shù)與組合數(shù)的關(guān)系是: 組合數(shù)公式是: = = ; 組合數(shù)性質(zhì): = + = = = 3、二項(xiàng)式定理: 二項(xiàng)展開式的通項(xiàng)公式: 八、解析幾何 1、沙爾公式: 2、數(shù)軸上兩點(diǎn)間距離公式: 3、直角坐標(biāo)平面內(nèi)的兩點(diǎn)間距離公式: 4、若點(diǎn)P分有向線段 成定比λ,則λ= 5、若點(diǎn) ,點(diǎn)P分有向線段 。
試讀結(jié)束,如需閱讀或下載,請(qǐng)點(diǎn)擊購(gòu)買>
原發(fā)布者:xiaycn
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)引言1.課程內(nèi)容:必修課程由5個(gè)模塊組成:必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對(duì)、冪函數(shù))必修2:立體幾何初步、平面解析幾何初步。必修3:算法初步、統(tǒng)計(jì)、概率。必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。必修5:解三角形、數(shù)列、不等式。以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識(shí)的發(fā)生、發(fā)展過(guò)程和實(shí)際應(yīng)用,而不在技巧與難度上做過(guò)高的要求。此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。選修課程有4個(gè)系列:系列1:由2個(gè)模塊組成。選修1—1:常用邏輯用語(yǔ)、圓錐曲線與方程、導(dǎo)數(shù)及其應(yīng)用。選修1—2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖系列2:由3個(gè)模塊組成。選修2—1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何。選修2—2:導(dǎo)數(shù)及其應(yīng)用,推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)選修2—3:計(jì)數(shù)原理、隨機(jī)變量及其分布列,統(tǒng)計(jì)案例。系列3:由6個(gè)專題組成。選修3—1:數(shù)學(xué)史選講。選修3—2:信息安全與密碼。選修3—3:球面上的幾何。選修3—4:對(duì)稱與群。選修3—5:歐拉公式與閉曲面分類。選修3—6:三等分角與數(shù)域擴(kuò)充。系列4:由10個(gè)專題組成。選修4
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁(yè)面生成時(shí)間:3.377秒