需要數(shù)學(xué)基礎(chǔ):高等數(shù)學(xué),線性代數(shù),概率論數(shù)理統(tǒng)計(jì)和隨機(jī)過程,離散數(shù)學(xué),數(shù)值分析。
數(shù)學(xué)基礎(chǔ)知識(shí)蘊(yùn)含著處理智能問題的基本思想與方法,也是理解復(fù)雜算法的必備要素。今天的種種人工智能技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,要了解人工智能,首先要掌握必備的數(shù)學(xué)基礎(chǔ)知識(shí)。
線性代數(shù)將研究對(duì)象形式化,概率論描述統(tǒng)計(jì)規(guī)律。需要算法的積累:人工神經(jīng)網(wǎng)絡(luò),支持向量機(jī),遺傳算法等等算法;當(dāng)然還有各個(gè)領(lǐng)域需要的算法,比如要讓機(jī)器人自己在位置環(huán)境導(dǎo)航和建圖就需要研究SLAM;總之算法很多需要時(shí)間的積累。
需要掌握至少一門編程語言,比如C語言,MATLAB之類。畢竟算法的實(shí)現(xiàn)還是要編程的;如果深入到硬件的話,一些電類基礎(chǔ)課必不可少。
拓展資料:人工智能(Artificial Intelligence),英文縮寫為AI。它是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。
人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它企圖了解智能的實(shí)質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機(jī)器,該領(lǐng)域的研究包括機(jī)器人、語言識(shí)別、圖像識(shí)別、自然語言處理和專家系統(tǒng)等。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大,可以設(shè)想,未來人工智能帶來的科技產(chǎn)品,將會(huì)是人類智慧的“容器”。
人工智能可以對(duì)人的意識(shí)、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。
人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項(xiàng)工作的人必須懂得計(jì)算機(jī)知識(shí),心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí),計(jì)算機(jī)視覺等等,總的說來,人工智能研究的一個(gè)主要目標(biāo)是使機(jī)器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。
但不同的時(shí)代、不同的人對(duì)這種“復(fù)雜工作”的理解是不同的。2017年12月,人工智能入選“2017年度中國媒體十大流行語”。
參考資料:百度百科—人工智能:計(jì)算機(jī)科學(xué)的一個(gè)分支。
人工智能的定義可以分為兩部分,即“人工”和“智能”。“人工”比較好理解,爭議性也不大。有時(shí)我們會(huì)要考慮什么是人力所能及制造的,或著人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。
關(guān)于什么是“智能”,就問題多多了。這涉及到其它諸如意識(shí)(consciousness)、自我(self)、思維(mind)(包括無意識(shí)的思維(unconscious_mind)等等問題。人唯一了解的智能是人本身的智能,這是普遍認(rèn)同的觀點(diǎn)。但是我們對(duì)我們自身智能的理解都非常有限,對(duì)構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及對(duì)人的智能本身的研究。其它關(guān)于動(dòng)物或其它人造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。
人工智能目前在計(jì)算機(jī)領(lǐng)域內(nèi),得到了愈加廣泛的重視。并在機(jī)器人,經(jīng)濟(jì)政治決策,控制系統(tǒng),仿真系統(tǒng)中得到應(yīng)用--機(jī)器視覺:指紋識(shí)別,人臉識(shí)別,視網(wǎng)膜識(shí)別,虹膜識(shí)別,掌紋識(shí)別,專家系統(tǒng)等。
人工智能(Artificial Intelligence)是研究解釋和模擬人類智能、智能行為及其規(guī)律的一門學(xué)科。其主要任務(wù)是建立智能信息處理理論,進(jìn)而設(shè)計(jì)可以展現(xiàn)某些近似于人類智能行為的計(jì)算系統(tǒng)。AI作為計(jì)算機(jī)科學(xué)的一個(gè)重要分支和計(jì)算機(jī)應(yīng)用的一個(gè)廣闊的新領(lǐng)域,它同原子能技術(shù),空間技術(shù)一起被稱為20世紀(jì)三大尖端科技。
人工智能學(xué)科研究的主要內(nèi)容包括:知識(shí)表示、自動(dòng)推理和搜索方法、機(jī)器學(xué)習(xí)和知識(shí)獲取、知識(shí)處理系統(tǒng)、自然語言理解、計(jì)算機(jī)視覺、智能機(jī)器人、自動(dòng)程序設(shè)計(jì)等方面。
知識(shí)表示是人工智能的基本問題之一,推理和搜索都與表示方法密切相關(guān)。常用的知識(shí)表示方法有:邏輯表示法、產(chǎn)生式表示法、語義網(wǎng)絡(luò)表示法和框架表示法等。
常識(shí),自然為人們所關(guān)注,已提出多種方法,如非單調(diào)推理、定性推理就是從不同角度來表達(dá)常識(shí)和處理常識(shí)的。
問題求解中的自動(dòng)推理是知識(shí)的使用過程,由于有多種知識(shí)表示方法,相應(yīng)地有多種推理方法。推理過程一般可分為演繹推理和非演繹推理。謂詞邏輯是演繹推理的基礎(chǔ)。結(jié)構(gòu)化表示下的繼承性能推理是非演繹性的。由于知識(shí)處理的需要,近幾年來提出了多種非演澤的推理方法,如連接機(jī)制推理、類比推理、基于示例的推理、反繹推理和受限推理等。
搜索是人工智能的一種問題求解方法,搜索策略決定著問題求解的一個(gè)推理步驟中知識(shí)被使用的優(yōu)先關(guān)系??煞譃闊o信息導(dǎo)引的盲目搜索和利用經(jīng)驗(yàn)知識(shí)導(dǎo)引的啟發(fā)式搜索。啟發(fā)式知識(shí)常由啟發(fā)式函數(shù)來表示,啟發(fā)式知識(shí)利用得越充分,求解問題的搜索空間就越小。典型的啟發(fā)式搜索方法有A*、AO*算法等。近幾年搜索方法研究開始注意那些具有百萬節(jié)點(diǎn)的超大規(guī)模的搜索問題。
機(jī)器學(xué)習(xí)是人工智能的另一重要課題。機(jī)器學(xué)習(xí)是指在一定的知識(shí)表示意義下獲取新知識(shí)的過程,按照學(xué)習(xí)機(jī)制的不同,主要有歸納學(xué)習(xí)、分析學(xué)習(xí)、連接機(jī)制學(xué)習(xí)和遺傳學(xué)習(xí)等。
知識(shí)處理系統(tǒng)主要由知識(shí)庫和推理機(jī)組成。知識(shí)庫存儲(chǔ)系統(tǒng)所需要的知識(shí),當(dāng)知識(shí)量較大而又有多種表示方法時(shí),知識(shí)的合理組織與管理是重要的。推理機(jī)在問題求解時(shí),規(guī)定使用知識(shí)的基本方法和策略,推理過程中為記錄結(jié)果或通信需設(shè)數(shù)據(jù)庫或采用黑板機(jī)制。如果在知識(shí)庫中存儲(chǔ)的是某一領(lǐng)域(如醫(yī)療診斷)的專家知識(shí),則這樣的知識(shí)系統(tǒng)稱為專家系統(tǒng)。為適應(yīng)復(fù)雜問題的求解需要,單一的專家系統(tǒng)向多主體的分布式人工智能系統(tǒng)發(fā)展,這時(shí)知識(shí)共享、主體間的協(xié)作、矛盾的出現(xiàn)和處理將是研究的關(guān)鍵問題。
人工智能是人類設(shè)計(jì)創(chuàng)造出來的,它們的存在無疑為人類現(xiàn)在和將來的生活工作效率等等都是很大的幫助,其實(shí)一種事物是否有害,是看用它的是什么樣的人,出于什么目的,要是用的得當(dāng),以為人類造福為福祉,那就是有利的。
但可能對(duì)人的就業(yè)要求會(huì)更高,也可能使得一部分人的工作因?yàn)楸蝗斯ぶ荒芴娲斐墒聵I(yè)。
需要必備的知識(shí)有: 1、線性代數(shù):如何將研究對(duì)象形式化? 2、概率論:如何描述統(tǒng)計(jì)規(guī)律? 3、數(shù)理統(tǒng)計(jì):如何以小見大? 4、最優(yōu)化理論: 如何找到最優(yōu)解? 5、信息論:如何定量度量不確定性? 6、形式邏輯:如何實(shí)現(xiàn)抽象推理? 7、線性代數(shù):如何將研究對(duì)象形式化?人工智能簡介: 1、人工智能(Artificial Intelligence),英文縮寫為AI。
2、它是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。 人工智能涉及的學(xué)科: 哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計(jì)算機(jī)科學(xué),信息論,控制論,不定性論,仿生學(xué),社會(huì)結(jié)構(gòu)學(xué)與科學(xué)發(fā)展觀。
人工智能是一個(gè)包含很多學(xué)科的交叉學(xué)科,你需要了解計(jì)算機(jī)的知識(shí)、信息論、控制論、圖論、心理學(xué)、生物學(xué)、熱力學(xué),你要有一定的哲學(xué)基礎(chǔ),有科學(xué)方法論作保障。
這些學(xué)科的每一門都是博大精深的,但同時(shí)很多事物都是相通的,你學(xué)了很多知識(shí)有了一定的基礎(chǔ)的時(shí)候再看相關(guān)知識(shí)就會(huì)觸類旁通,很容易。在這中間關(guān)鍵是要有自己的思考,不能人云亦云,畢竟人工智能是一個(gè)正在發(fā)展并具有無窮挑戰(zhàn)和樂趣的學(xué)科,如果你對(duì)人工智能感興趣,那歡迎到百度的人工智能吧做客,那里有對(duì)人工智能豐富而深刻的討論。
AI是Illustrator的簡稱 Illustrator是美國ADOBE(奧多比)公司推出的專業(yè)矢量繪圖工具,是出版、多媒體和在線圖像的工業(yè)標(biāo)準(zhǔn)矢量插畫軟件。Illustrator是由Adobe公司出品,英文全稱是Adobe Systems Inc,始創(chuàng)于 1982 年,是廣告、印刷、出版和Web領(lǐng)域首屈一指的圖形設(shè)計(jì)、出版和成像軟件設(shè)計(jì)公司,同時(shí)也是世界上第二大桌面軟件公司。公司為圖形設(shè)計(jì)人員、專業(yè)出版人員、文檔處理機(jī)構(gòu)和Web設(shè)計(jì)人員,以及商業(yè)用戶和消費(fèi)者提供了首屈一指的軟件。使用 Adobe 的軟件,用戶可以設(shè)計(jì)、出版和制作具有精彩視覺效果的圖像和文件。 AI常見問題小竅門!1、在AI中,有沒有和CD一樣的調(diào)整文字間距的快捷鍵呀?
答:a.先畫個(gè)圓角矩形,用“直接選擇工具”選中這個(gè)角上的兩個(gè)點(diǎn);
b.選中后執(zhí)行“自由變換(E鍵)”,把鼠標(biāo)放在需要調(diào)整角的“對(duì)角”上。
c.在出現(xiàn)雙向箭頭時(shí),拖動(dòng)到想要的效果時(shí)放開鼠標(biāo)。
答:AI沒有分頁功能,但在新建文件時(shí)你在畫板數(shù)量那里填你需要的頁面就好了;
可以安裝MultiPage(AI的多頁插件)或?qū)⒍鄠€(gè)跨頁平均分布在一個(gè)頁面上。
答:a.對(duì)文字對(duì)象應(yīng)用:效果--路徑--輪廓化對(duì)象;
b.Shift+F7打開對(duì)齊面板,點(diǎn)右上角小三角,打開菜單,勾選“使用預(yù)覽邊界”
這樣,就可以讓文字對(duì)象絕對(duì)的以實(shí)際邊界進(jìn)行對(duì)齊分布了!
答:在AI中選中對(duì)象執(zhí)行—對(duì)象—編組(或鎖定、隱藏)。
Ctrl+G Q組 Ctrl+2 鎖定 ctrl+3 隱藏
答:選中兩個(gè)物件,打開透明面板,右上角的小三角形,選中創(chuàng)建不透明蒙板。
答:a.把你需要出血的漸變圖形對(duì)象“復(fù)制”一個(gè)原位粘貼,并隱藏、鎖定。
b.選中原漸變,執(zhí)行—對(duì)象—擴(kuò)展,可以看出變成了一條條的色塊。
c.F7回到圖層面板把最靠邊的留下,其他的都刪掉。
答:選中段落文本執(zhí)行—對(duì)象—拼合透明度—取消編組。
答:AI里面有四種畫筆,選擇圖形,單擊畫筆面板中的新建按鈕。或直接拖到畫筆面板中去。
書法畫筆直接單擊新建按鈕。
答:在用AI時(shí)選中一個(gè)物體后,按鍵盤上的逗號(hào)、句號(hào)、問號(hào)鍵可以分別填充AI工具箱下方的三種填充類型,即實(shí)色填充、漸變填充、無填充。
UI需要哪些繪畫基礎(chǔ)知識(shí)?結(jié)構(gòu):物體占據(jù)空間的方式。
一般設(shè)計(jì)行業(yè)的素描都是結(jié)構(gòu)素描。結(jié)構(gòu)的重要性不言而喻。
?為什么素描要從幾何圖形畫起?原因就是夠簡單。當(dāng)你去處理一個(gè)復(fù)雜圖形的時(shí)候,把它拆解成簡單的幾何圖形最容易理解,和控制。
我們是在二維世界里,去表現(xiàn)三維世界的空間,所以理解了結(jié)構(gòu),就能理解很多其他東西。比如光原理:光是一個(gè)永遠(yuǎn)的存在,影響光的因素,其實(shí)就是結(jié)構(gòu),其次是材質(zhì)對(duì)光的反射比例。
?肯定也需要學(xué)習(xí)和了解透視原理因?yàn)榻裉爝@部分不是講解美術(shù)基礎(chǔ),所以只能做簡單介紹常規(guī)透視:基礎(chǔ)透視原理平行透視:其實(shí)是平面設(shè)計(jì)行業(yè)用的最多的透視方式,不用考慮滅點(diǎn)形變之類的因素。視覺透視:人的視覺是有生理誤差了,所以感官上來講,很多透視都做了相應(yīng)的修改,以適應(yīng)人眼的觀看方式。
需要數(shù)學(xué)基礎(chǔ):
高等數(shù)學(xué),線性代數(shù),概率論數(shù)理統(tǒng)計(jì)和隨機(jī)過程,離散數(shù)學(xué),數(shù)值分析。數(shù)學(xué)基礎(chǔ)知識(shí)蘊(yùn)含著處理智能問題的基本思想與方法,也是理解復(fù)雜算法的必備要素。今天的種種人工智能技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,要了解人工智能,首先要掌握必備的數(shù)學(xué)基礎(chǔ)知識(shí)。線性代數(shù)將研究對(duì)象形式化,概率論描述統(tǒng)計(jì)規(guī)律。
需要算法的積累:
人工神經(jīng)網(wǎng)絡(luò),支持向量機(jī),遺傳算法等等算法;當(dāng)然還有各個(gè)領(lǐng)域需要的算法,比如要讓機(jī)器人自己在位置環(huán)境導(dǎo)航和建圖就需要研究SLAM;總之算法很多需要時(shí)間的積累。
需要掌握至少一門編程語言:
比如C語言,MATLAB之類。畢竟算法的實(shí)現(xiàn)還是要編程的;如果深入到硬件的話,一些電類基礎(chǔ)課必不可少。
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁面生成時(shí)間:2.756秒