數(shù)學(xué)解題思想方法有哪些
一.數(shù)學(xué)思想方法總論
高中數(shù)學(xué)一線牽,代數(shù)幾何兩珠連;
三個基本記心間,四種能力非等閑.
常規(guī)五法天天練,策略六項時時變,
精研數(shù)學(xué)七思想,誘思導(dǎo)學(xué)樂無邊.
一 線:函數(shù)一條主線(貫穿教材始終)
二 珠:代數(shù)、幾何珠聯(lián)璧合(注重知識交匯)
三 基:方法(熟) 知識(牢) 技能(巧)
四能力:概念運算(準(zhǔn)確)、邏輯推理(嚴(yán)謹(jǐn))、
空間想象(豐富)、分解問題(靈活)
五 法:換元法、配方法、待定系數(shù)法、分析法、歸納法.
六策略:以簡馭繁,正難則反,以退為進,化異為同,移花接木,以靜思動.
七思想:函數(shù)方程最重要,分類整合常用到,
數(shù)形結(jié)合千般好,化歸轉(zhuǎn)化離不了;
有限自將無限描,或然終被必然表,
特殊一般多辨證,知識交匯步步高.
二.數(shù)學(xué)知識方法分論:
集合與邏輯
集合邏輯互表里,子交并補歸全集.
對錯難知開語句,是非分明即命題;
縱橫交錯原否逆,充分必要四關(guān)系.
真非假時假非真,或真且假運算奇.
函數(shù)與數(shù)列
數(shù)列函數(shù)子母胎,等差等比自成排.
數(shù)列求和幾多法?通項遞推思路開;
變量分離無好壞,函數(shù)復(fù)合有內(nèi)外.
同增異減定單調(diào),區(qū)間挖隱最值來.
三角函數(shù)
三角定義比值生,弧度互化實數(shù)融;
同角三類善誘導(dǎo),和差倍半巧變通.
解前若能三平衡,解后便有一脈承;
角值計算大化小,弦切相逢異化同.
方程與不等式
函數(shù)方程不等根,常使參數(shù)范圍生;
一正二定三相等,均值定理最值成.
參數(shù)不定比大小,兩式不同三法證;
等與不等無絕對,變量分離方有恒.
解析幾何
聯(lián)立方程解交點,設(shè)而不求巧判別;
韋達定理表弦長,斜率轉(zhuǎn)化過中點.
選參建模求軌跡,曲線對稱找距離;
動點相關(guān)歸定義,動中求靜助解析.
立體幾何
多點共線兩面交,多線共面一法巧;
空間三垂優(yōu)弦大,球面兩點劣弧小.
線線關(guān)系線面找,面面成角線線表;
等積轉(zhuǎn)化連射影,能割善補架通橋.
排列與組合
分步則乘分類加,欲鄰需捆欲隔插;
有序則排無序組,正難則反排除它.
元素重復(fù)連乘法,特元特位你先拿;
平均分組階乘除,多元少位我當(dāng)家.
二項式定理
二項乘方知多少,萬里源頭通項找;
展開三定項指系,組合系數(shù)楊輝角.
整除證明底變妙,二項求和特值巧;
兩端對稱誰最大?主峰一覽眾山小.
概率與統(tǒng)計
概率統(tǒng)計同根生,隨機發(fā)生等可能;
互斥事件一枝秀,相互獨立同時爭.
樣本總體抽樣審,獨立重復(fù)二項分;
隨機變量分布列,期望方差論偽真.
問題的關(guān)鍵在于臨場發(fā)揮,其好與壞直接關(guān)系到數(shù)學(xué)考試的成敗。
所以說,臨場發(fā)揮的技巧是打勝這場仗必不可少的一項武器。 首先,拿到試卷之后應(yīng)該粗略地瀏覽一遍,除了看是否有印刷問題、缺漏頁之外,更重要的是看試卷的題量、結(jié)構(gòu)、難易程度,先對試卷有一個總體上的把握,做到心里有底。
其次,開始答題。答題也是講究順序的,一般按照先易后難、先簡后繁的順序作答。
一般來說,試卷上的考題也是按照這種順序排列的,但是也不排除有例外。所以,答題的時候要合理地運用時間,不要卡在某一道題目上面,那樣的話只會浪費時間又拿不到分,不僅這道題做不出,后面會做的題目也來不及做了。
遇到比較容易的題目,應(yīng)該格外地當(dāng)心,因為有的時候并不是險峻的高山擋住了我們的去路,而是腳下的不起眼的小石子將我們絆倒。所以,每當(dāng)遇到比較簡單的題目時,你要提醒自己特別留心,留心題目中會不會設(shè)什么陷阱,留心計算中會不會有什么差錯,留心解題的步驟是否嚴(yán)密,以保證將這些題目的分?jǐn)?shù)收入囊中。
遇到稍微有點難度的題目,最重要的是使自己冷靜下來,并且給自己打氣,告訴自己“我能行”,然后再進行思考。思考時,可以先用常規(guī)的方法嘗試解決,當(dāng)這條路走不通時,不妨“知難而退”,換一種方式進行,改變思考問題的角度,也許就能簡單地解決束手無策的問題。
無法答出問題時,還可預(yù)先列舉與問題有關(guān)的一切條件,再配合需要來確認(rèn)問題,將這些條件以各種角度來進行檢查,也許能找到解題的“鑰匙”。 當(dāng)然,稍微有點難度的題目對于有一定基礎(chǔ)和能力的同學(xué)來說,還是可以正確地解答出來的,但是,當(dāng)我們遇到感覺上非常難的題目時,此時“放棄”應(yīng)該是最好的選擇。
這一決定并不妨礙我們在考試中取得高分,因為一般非常難的題目在一次考試中所占的分?jǐn)?shù)并有多。這樣的話,只要保證其他題目都能夠做對,在考試中得高分還是很輕松的。
所以,遇到這種題目時,我們必須有“壯士斷腕”的決心,做到“棄卒保帥”。 一般來講,試卷做完還有5-10分鐘左右,這個5-10分鐘應(yīng)該是比較難熬的一段時間,我認(rèn)為可以利用這一段時間檢查一下選擇、填空題。
在這里我想說的是,除非有確切的證據(jù)證明你自己一開始的答案是錯誤的,對于拿不準(zhǔn)的題目最好還是堅持自己的第一印象,防止在最后幾分鐘內(nèi)將答案改錯,徒增遺憾。
數(shù)學(xué)難,對于文科學(xué)生來說就更難,但是難未必就是學(xué)不會的,未必就考不出好成績來,要想學(xué)好數(shù)學(xué),其實很簡單,我從教學(xué)實踐總結(jié)以下幾點,僅供參考: 1、不要怕數(shù)學(xué),很多同學(xué)對數(shù)學(xué)似乎有一種天生的恐懼感,一看到數(shù)學(xué),心里就自然而然的產(chǎn)生一種抗拒情緒,影響自己正常的思維。
特別是那些應(yīng)用題,有些同學(xué)連題目都沒有看,一看題目那么長,就不敢下筆,直接認(rèn)為自己不會做,白白浪費了大好的機會。須不知,數(shù)學(xué)的應(yīng)用題,實際上就是所謂的送分題,很少有真正的難點出現(xiàn)。
只要你能夠認(rèn)真的把題目讀完,寫出數(shù)學(xué)表達式,分?jǐn)?shù)就做完了一大半。 2、其實數(shù)學(xué)里面,大部分都是變化,真正要記的也就是那么幾個公式。
我們完全可以跟玩游戲一樣,把他當(dāng)作游戲來看待。數(shù)學(xué)公式就是我們手中的武器,題目就是我們的敵人。
只是每一種武器都有它自己的特性。不同的敵人,可能要換多種武器而已。
我想大家玩游戲時,應(yīng)該不會看到敵人,還沒有動手就逃跑吧。那樣你早就死翹翹了,還怎么通關(guān)呢?視數(shù)學(xué)為游戲,游戲而已,有什么大驚小怪的呢!真正碰壁了,換一條路就行了,走迷宮,我們都是高手。
一個小小的數(shù)學(xué)題,就想讓我們害怕,可能嗎?當(dāng)然,要想真正的做到視數(shù)學(xué)為游戲這個地步,還需要一個堅實的基礎(chǔ),這就是數(shù)學(xué)的基礎(chǔ)知識。 3、注意考場答題的技巧,有些同學(xué)特別厲害,每個題都一心一意的去做,但問題是他時間嚴(yán)重不夠,光選擇題就用了差不多一個小時,到后面做大題時,明明知道怎么做,也相信自己能夠做出來,可惜已經(jīng)快交卷了,只能忍痛舍棄。
可憐啊,為什么剛開始的時候不注意呢?下面我說說時間的分配,首先,做考場數(shù)學(xué)題,特別是高考題,一定要注意答題的技巧。剛拿到試卷的時候,不要直接就動手做題(一般老師也不會允許你答題),要好好把握這個時間,把整個試卷看一下(主要是看后面的幾個大題目),看一下有沒有自己曾經(jīng)做過的題目,或者是自己曾經(jīng)見過那個題型,看一下有沒有自己能夠很快就可以做完的題目,看完之后,首先就把這些題目做出來。
然后再做選擇題。整個考場做題的步驟是這樣的:曾經(jīng)做過的題——選擇題——大題——填空題。
為什么把填空題放在最后呢,因為填空題分值較小,而且跟計算題區(qū)別不大,要費很大心思,它又不像選擇題,可以猜答案,所以一般放在最后。其次,做考場題的時候,一定要注意拿分。
也就是說,做的一切都是為了分?jǐn)?shù)。題目不會做不要緊,有分拿就OK了。
所以做題時,特別是在做后面那些計算題的時候,要注意拿分的技巧。第一個要注意的就是解題格式。
因為改卷是按步驟給分的,所以,無論你那個題目會不會做,至少你要有一個題設(shè)過程,然后再寫出一個數(shù)學(xué)式子(如果你數(shù)學(xué)式子寫不出來,起碼用中文寫一個表達式是沒有問題的吧)。至于計算,如果你實在不會,就算了,不要在這里浪費太多的時間,后面還有很多題目等著你呢! 4、注意做題技巧,這里講的做題技巧,主要是針對選擇題和填空題而言。
這類題目,要的只是一個答案,至于用什么方法,沒有任何要求。我們做的時候,沒有必要象做計算題一樣,老老實實的去計算。
只要能夠得到答案,就算是猜的,也沒有人能夠管你。所以這一類題目,要點就是一個:猜! 以上幾點是我個人認(rèn)為的學(xué)好數(shù)學(xué)的方法,當(dāng)然,最主要的還是基本功一定要扎實。
1。
數(shù)學(xué)是研究數(shù)量結(jié)構(gòu)、變化、以及空間模型等概念的科學(xué).它是物理、化學(xué)等學(xué)科的基礎(chǔ),而且與我們的生活息息相關(guān).所以說,學(xué)好數(shù)學(xué)對于我們每個同學(xué)來說都是非常重要的。初中階段,我們就逐漸開始接觸比較難的數(shù)學(xué)知識了,但是這個過程是循序漸進的,所以只要一步一步的學(xué)好每一階段的知識,學(xué)好數(shù)學(xué)是并不難的。
進入初中后,在數(shù)學(xué)課的平時學(xué)習(xí)中,要做到以下幾點,能夠保證將所學(xué)的知識掌握牢固。
1.課前認(rèn)真預(yù)習(xí).預(yù)習(xí)的目的是為了能更好得聽老師講課,通過預(yù)習(xí),掌握度要達到百分之八十.帶著預(yù)習(xí)中不明白的問題去聽老師講課,來解答這類的問題.預(yù)習(xí)還可以使聽課的整體效率提高.具體的預(yù)習(xí)方法:將書上的題目做完,畫出知識點,整個過程大約持續(xù)15-20分鐘.在時間允許的情況下,還可以將練習(xí)冊做完。
2.讓數(shù)學(xué)課學(xué)與練結(jié)合.在數(shù)學(xué)課上,光聽是沒用的.當(dāng)老師讓同學(xué)去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細(xì)節(jié)問題,否則“千里之堤,毀于蟻穴”。
3.課后及時復(fù)習(xí).寫完作業(yè)后對當(dāng)天老師講的內(nèi)容進行梳理,可以適當(dāng)?shù)刈?5分鐘左右的課外題.可以根據(jù)自己的需要選擇適合自己的課外書.其課外題內(nèi)容大概就是今天上的課。
4.單元測驗是為了檢測近期的學(xué)習(xí)情況.其實分?jǐn)?shù)代表的是你的過去,關(guān)鍵的是對于每次考試的總結(jié)和吸取教訓(xùn),是為了讓你在期中、期末考得更好.老師經(jīng)常會在沒通知的情況下進行考試,所以要及時做到“課后復(fù)習(xí)”。
期中期末階段的學(xué)習(xí)中要將平時的單元檢測卷整理整齊,并且將錯題再做一遍.如果整張試卷考得都不好,那么可以復(fù)印將試卷重做一遍.除試卷外,還可以將作業(yè)上的錯題、難題、易錯題重做一遍。
如果想得高分,在選擇、填空、計算題上是不能丟分的。在考數(shù)學(xué)的時候思想不能開小差,而且遇到難題時不能想“沒考好怎么辦啊”等內(nèi)容。在通常情況下,期末考試的難題都是不知道怎么做,但有可能突然明白的那種。遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析。在期中、期末考試中有充足的時間,將自己的速度壓下來,不是越快越好,爭取一次做成功.大概留35分鐘的時間檢查。
多做題有一定作用,但上課聽講、認(rèn)真答題及提高準(zhǔn)確率、總結(jié)經(jīng)驗才是最重要的。還要將所學(xué)的知識用到生活中去,做到學(xué)以致用。當(dāng)你運用數(shù)學(xué)知識解決了生活中實際問題的時候,你就會感受到學(xué)習(xí)數(shù)學(xué)的快樂。
解題思路的獲得,一般要經(jīng)歷三個步驟:
1.從理解題意中提取有用的信息,如數(shù)式特點,圖形結(jié)構(gòu)特征等;
2.從記憶儲存中提取相關(guān)的信息,如有關(guān)公式,定理,基本模式等;
3.將上述兩組信息進行有效重組,使之成為一個合乎邏輯的和諧結(jié)構(gòu)。
數(shù)學(xué)的表達,有3種方式:
1.文字語言,即用漢字表達的內(nèi)容;
2.圖形語言,如幾何的圖形,函數(shù)的圖象;
3.符號語言,即用數(shù)學(xué)符號表達的內(nèi)容,比如AB∥CD。
在初中學(xué)段中,不僅要學(xué)好數(shù)學(xué)知識,同時也要注意數(shù)學(xué)思想方法的學(xué)習(xí),掌握好思想和方法,對數(shù)學(xué)的學(xué)習(xí)將會起到事半功倍的良好效果。其中整體與分類、類比與聯(lián)想、轉(zhuǎn)化與化歸和數(shù)形結(jié)合等不僅僅是學(xué)好數(shù)學(xué)的重要思想,同時對您今后的生活也必將起重要的作用。
先來看轉(zhuǎn)化思想:
我們知道任何事物都在不斷的運動,也就是轉(zhuǎn)化和變化。在生活中,為了解決一個具體問題,不論它有多復(fù)雜,我們都會把它簡單化,熟悉化以后再去解決。體現(xiàn)在數(shù)學(xué)上也就是要把難的問題轉(zhuǎn)化為簡單的問題,把不熟悉的問題轉(zhuǎn)化為熟悉的問題,把未知的問題轉(zhuǎn)化為已知的問題。
如方程的學(xué)習(xí)中,一元一次方程是學(xué)習(xí)方程的基礎(chǔ),那么在學(xué)習(xí)二元一次方程組時,可以通過加減消元和代入消元這樣的手段把二元一次方程組轉(zhuǎn)化為一元一次方程來解決,轉(zhuǎn)化(加減和代入)是手段,消元是目的;在學(xué)習(xí)一元二次方程時,可以通過因式分解把一元二次方程轉(zhuǎn)化為兩個一元一次方程,在這里,轉(zhuǎn)化(分解因式)是手段,降次是目的。把未知轉(zhuǎn)化為已知,把復(fù)雜轉(zhuǎn)化為簡單。同樣,三元一次方程組可以通過加減和代入轉(zhuǎn)化為二元一次方程組,再轉(zhuǎn)化為一元一次方程。在幾何學(xué)習(xí)中,三角形是基礎(chǔ),可能通過連對角線等作輔助線的方法把多邊形轉(zhuǎn)化為多個三角形進行問題的解決。
所以,在數(shù)學(xué)學(xué)習(xí)和生活中都要注意轉(zhuǎn)化思想的運用,解決問題,轉(zhuǎn)化是關(guān)鍵。
中學(xué)數(shù)學(xué)常用的解題方法 數(shù)學(xué)的解題方法是隨著對數(shù)學(xué)對象的研究的深入而發(fā)展起來的。
教師鉆研習(xí)題、精通解題方法,可以促進教師進一步熟練地掌握中學(xué)數(shù)學(xué)教材,練好解題的基本功,提高解題技巧,積累教學(xué)資料,提高業(yè)務(wù)水平和教學(xué)能力。 下面介紹的解題方法,都是初中數(shù)學(xué)中最常用的,有些方法也是中學(xué)教學(xué)大綱要求掌握的。
1、配方法 所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。
其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法 因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。
因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。 3、換元法 換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。
我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。 4、判別式法與韋達定理 一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。 5、待定系數(shù)法 在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。
它是中學(xué)數(shù)學(xué)中常用的方法之一。 6、構(gòu)造法 在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。
運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。 7、反證法 反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。
反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(?。┯?不大(?。┯?;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。 歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。
推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法 平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。
所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。 9、幾何變換法 在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。
所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。
有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。
將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。 幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
10.客觀性題的解題方法 選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的。
怎樣學(xué)好高中數(shù)學(xué)?首先要摘要答題技巧
現(xiàn)在數(shù)學(xué)這個科目也是必須學(xué)習(xí)的內(nèi)容,但是現(xiàn)在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導(dǎo)致這個科目拉他們的總分,該怎樣學(xué)好高中數(shù)學(xué)?對于數(shù)學(xué)題,他們都分為哪些類型?
老師在上數(shù)學(xué)課
我相信數(shù)學(xué)你們應(yīng)該都知道吧,不管是在什么時候,不管是學(xué)習(xí)上面還是在生活方面處處都是要用到的,到了高中該怎樣學(xué)好高中數(shù)學(xué),現(xiàn)在我就來教你們一些數(shù)學(xué)的技巧.
選擇題
1、排除:
排除方法是根據(jù)問題和相關(guān)知識你就知道你肯定不選擇這一項,因此只剩下正確的選項.如果不能立即獲得正確的選項,但是你們還是要對自己的需求都是要對這些有應(yīng)的標(biāo)準(zhǔn),提高解決問題的精度.注意去除這種方式還是一種解答這種大麻煩的好方式,也是解決選擇問題的常用方法.
2、特殊值法:
也就是說,根據(jù)標(biāo)題中的條件,擇選出來這種獨特的方式還有知道他們,耳膜的內(nèi)容關(guān)鍵都是要進行測量.在你使用這種方式答題的時候,你還是要看看這些方式都是有很多的要求會符合,你可以好好計算.
3、通過推測和測量,可以得到直接觀測或結(jié)果:
近年來,人們經(jīng)常用這種方法來探索高考題中問題的規(guī)律性.這類問題的主要解決方法是采用不完整的歸類方式,通過實驗、猜測、試錯驗證、總結(jié)、歸納等過程,使問題得以解決.
填空題
1、直接法:
根據(jù)桿所給出的條件,通過計算、推理或證明,可以直接得到正確的答案.
2、圖形方法:
根據(jù)問題的主干提供信息,畫圖,得到正確的答案.
首先,知道題干的需求來填寫內(nèi)容,有時,還有就是這些都有一些結(jié)果,比如回答特定的數(shù)字,精確到其中,遺憾的是,有些候選人沒有注意到這一點,并且犯了錯誤.
其次,沒有附加條件的,應(yīng)當(dāng)根據(jù)具體情況和一般規(guī)則回答.應(yīng)該仔細(xì)分析這個話題的暗藏要求.
總之,填空和選擇問題一樣,這種題型不同寫出你是怎樣算出這道題的,而是直接寫出最終的結(jié)果.只有打好基礎(chǔ),加強訓(xùn)練,加強解開答案的秘籍,才能準(zhǔn)確、快速地解決問題.另一方面要加強對填報問題的分析研究,掌握填報問題的特點和解決辦法,減少錯誤.
高中數(shù)學(xué)試卷
怎樣學(xué)好高中數(shù)學(xué)這也是需要我們自己群摸索一些學(xué)習(xí)的技巧,找到自己適合的方法,這還是很關(guān)鍵的.
1.調(diào)整好狀態(tài),控制好自我。
(1)保持清醒。數(shù)學(xué)的考試時間在下午,建議同學(xué)們中午最好休息半個小時或一個小時,其間盡量放松自己,從心理上暗示自己:只有靜心休息才能確??荚嚂r清醒。(2)按時到位。今年的答題卡不再單獨發(fā)放,要求答在答題卷上,但發(fā)卷時間應(yīng)在開考前5-10分鐘內(nèi)。建議同學(xué)們提前15-20分鐘到達考場。
2.通覽試卷,樹立自信。
剛拿到試卷,一般心情比較緊張,此時不易匆忙作答,應(yīng)從頭到尾、通覽全卷,哪些是一定會做的題要心中有數(shù),先易后難,穩(wěn)定情緒。答題時,見到簡單題,要細(xì)心,莫忘乎所以。面對偏難的題,要耐心,不能急。
3.提高解選擇題的速度、填空題的準(zhǔn)確度。
數(shù)學(xué)選擇題是知識靈活運用,解題要求是只要結(jié)果、不要過程。因此,逆代法、估算法、特例法、排除法、數(shù)形結(jié)合法??盡顯威力。12個選擇題,若能把握得好,容易的一分鐘一題,難題也不超過五分鐘。由于選擇題的特殊性,由此提出解選擇題要求“快、準(zhǔn)、巧”,忌諱“小題大做”。填空題也是只要結(jié)果、不要過程,因此要力求“完整、嚴(yán)密”。
4.審題要慢,做題要快,下手要準(zhǔn)。
題目本身就是破解這道題的信息源,所以審題一定要逐字逐句看清楚,只有細(xì)致地審題才能從題目本身獲得盡可能多的信息。
找到解題方法后,書寫要簡明扼要,快速規(guī)范,不拖泥帶水,牢記高考評分標(biāo)準(zhǔn)是按步給分,關(guān)鍵步驟不能丟,但允許合理省略非關(guān)鍵步驟。答題時,盡量使用數(shù)學(xué)語言、符號,這比文字?jǐn)⑹鲆?jié)省而嚴(yán)謹(jǐn)。
5.保質(zhì)保量拿下中下等題目。
中下題目通常占全卷的80%以上,是試題的主要部分,是考生得分的主要來源。誰能保質(zhì)保量地拿下這些題目,就已算是打了個勝仗,有了勝利在握的心理,對攻克高難題會更放得開。www.KaO8.C
6.要牢記分段得分的原則,規(guī)范答題。
會做的題目要特別注意表達的準(zhǔn)確、考慮的周密、書寫的規(guī)范、語言的科學(xué),防止被“分段扣點分”。難題要學(xué)會:
(1)缺步解答:聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,能解決多少就解決多少,能演算幾步就寫幾步。特別是那些解題層次明顯的題目,或者是已經(jīng)程序化了的方法,每進行一步得分點的演算都可以得分,最后結(jié)論雖然未得出,但分?jǐn)?shù)卻已過半。
(2)跳步答題:解題過程卡在某一過渡環(huán)節(jié)上是常見的。這時,我們可以假定某些結(jié)論是正確的往后推,看能否得到結(jié)論,或從結(jié)論出發(fā),看使結(jié)論成立需要什么條件。如果方向正確,就回過頭來,集中力量攻克這一“卡殼處”。如果時間不允許,那么可以把前面的寫下來,再寫出“證實某步之后,繼續(xù)有??”一直做到底,這就是跳步解答。也許,后來中間步驟又想出來,這時不要亂七八糟插上去,可補在后面。若題目有兩問,第一問想不出來,可把第一問作“已知”,“先做第二問”,這也是跳步解答。今年仍是網(wǎng)上閱卷,望廣大考生規(guī)范答題,減少隱形失分。
平時學(xué)習(xí)方面 1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。
學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。
2、及時了解、掌握常用的數(shù)學(xué)思想和方法學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數(shù)學(xué)題時,也要注意解題思維策略問題,經(jīng)常要思考:選擇什么角度來進入,應(yīng)遵循什么原則性的東西。高中數(shù)學(xué)中經(jīng)常用到的數(shù)學(xué)思維策略有:以簡馭繁、數(shù)形結(jié)合、進退互用、化生為熟、正難則反、倒順相還、動靜轉(zhuǎn)換、分合相輔等。
3、逐步形成“以我為主”的學(xué)習(xí)模式 數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動地參與學(xué)習(xí)過程,養(yǎng)成實事求是的科學(xué)態(tài)度,獨立思考、勇于探索的創(chuàng)新精神;正確對待學(xué)習(xí)中的困難和挫折,敗不餒,勝不驕,養(yǎng)成積極進取,不屈不撓,耐挫折的優(yōu)良心理品質(zhì);在學(xué)習(xí)過程中,要遵循認(rèn)識規(guī)律,善于開動腦筋,積極主動去發(fā)現(xiàn)問題,注重新舊知識間的內(nèi)在聯(lián)系,不滿足于現(xiàn)成的思路和結(jié)論,經(jīng)常進行一題多解,一題多變,從多側(cè)面、多角度思考問題,挖掘問題的實質(zhì)。
學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。對課本知識既要能鉆進去,又要能跳出來,結(jié)合自身特點,尋找最佳學(xué)習(xí)方法。
4、針對自己的學(xué)習(xí)情況,采取一些具體的措施 (1)記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
(2)建立數(shù)學(xué)糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。
爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴(yán)密。
(3)熟記一些數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。 (4)經(jīng)常對知識結(jié)構(gòu)進行梳理,形成板塊結(jié)構(gòu),實行“整體集裝”,如表格化,使知識結(jié)構(gòu)一目了然;經(jīng)常對習(xí)題進行類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問題歸納于同一知識方法。
(5)閱讀數(shù)學(xué)課外書籍與報刊,參加數(shù)學(xué)學(xué)科課外活動與講座,多做數(shù)學(xué)課外題,加大自學(xué)力度,拓展自己的知識面。 (6)及時復(fù)習(xí),強化對基本概念知識體系的理解與記憶,進行適當(dāng)?shù)姆磸?fù)鞏固,消滅前學(xué)后忘。
(7)學(xué)會從多角度、多層次地進行總結(jié)歸類。如:①從數(shù)學(xué)思想分類②從解題方法歸類③從知識應(yīng)用上分類等,使所學(xué)的知識系統(tǒng)化、條理化、專題化、網(wǎng)絡(luò)化。
(8)經(jīng)常在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。 (9)無論是作業(yè)還是測驗,都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學(xué)好數(shù)學(xué)的重要問題。
解題方面 數(shù)學(xué)是應(yīng)用性很強的學(xué)科,學(xué)習(xí)數(shù)學(xué)就是學(xué)習(xí)解題。搞題海戰(zhàn)術(shù)的方式、方法固然是不對的,但離開解題來學(xué)習(xí)數(shù)學(xué)同樣也是錯誤的。
其中的關(guān)鍵在于對待題目的態(tài)度和處理解題的方式上。 ——首先是精選題目,做到少而精 只有解決質(zhì)量高的、有代表性的題目才能達到事半功倍的效果。
然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。 ——其次是分析題目 解答任何一個數(shù)學(xué)題目之前,都要先進行分析。
相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。
當(dāng)然在這個過程中也反映出對數(shù)學(xué)基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
——最后,題目總結(jié) 解題不是目的,我們是通過解題來檢驗我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機會。
1.試卷上有參考公式,80%是有用的,它為你的解題指引了方向; 2.解答題的各小問之間有一種階梯關(guān)系,通常后面的問要使用前問的結(jié)論。
如果前問是證明,即使不會證明結(jié)論,該結(jié)論在后問中也可以使用。當(dāng)然,我們也要考慮結(jié)論的獨立性; 3.注意題目中的小括號括起來的部分,那往往是解題的關(guān)鍵; 二、答題策略選擇 1.先易后難是所有科目應(yīng)該遵循的原則,而數(shù)學(xué)卷上顯得更為重要。
一般來說,選擇題的后兩題,填空題的后一題,解答題的后兩題是難題。當(dāng)然,對于不同的學(xué)生來說,有的簡單題目也可能是自己的難題,所以題目的難易只能由自己確定。
一般來說,小題思考1分鐘還沒有建立解答方案,則應(yīng)采取“暫時性放棄”,把自己可做的題目做完再回頭解答; 2.選擇題有其獨特的解答方法,首先重點把握選擇支也是已知條件,利用選擇支之間的關(guān)系可能使你的答案更準(zhǔn)確。切記不要“小題大做”。
注意解答題按步驟給分,根據(jù)題目的已知條件與問題的聯(lián)系寫出可能用到的公式、方法、或是判斷。雖然不能完全解答,但是也要把自己的想法與做法寫到答卷上。
多寫不會扣分,寫了就可能得分。 三、答題思想方法 1.函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。
首先考慮定義域,其次使用“三合一定理”。 2.如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法; 3.面對含有參數(shù)的初等函數(shù)來說,在研究的時候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。
如所過的定點,二次函數(shù)的對稱軸或是……; 4.選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法; 5.求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法; 6.恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏; 7.圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關(guān),選擇設(shè)而不求點差法,與弦的中點無關(guān),選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式; 8.求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點、列式、化簡(注意去掉不符合條件的特殊點); 9.求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可; 10.三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍; 11.數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想; 12.立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計算注意系數(shù)1/3,而三角形面積的計算注意系數(shù)1/2 ;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題; 13.導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點是否在曲線上; 14.概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗正確與否的重要途徑; 15.三選二的三題中,極坐標(biāo)與參數(shù)方程注意轉(zhuǎn)化的方法,不等式題目注意柯西與絕對值的幾何意義,平面幾何重視與圓有關(guān)的知積,必要時可以測量; 16.遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成; 17.注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等; 18.絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義; 19.與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成; 20.關(guān)于中心對稱問題,只需使用中點坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。 四.每分必爭 1.答題時間共120分,而你要答分?jǐn)?shù)為150分的考卷,算一算就知道,每分鐘應(yīng)該解答1分多的題目,所以每1分鐘的時間都是重要的。
試卷發(fā)到手中首先完成必要的檢查(是否有印刷不清楚的地方)與填涂。之后剩下的時間就馬上看試卷中可能使用到的公式,做到心中有數(shù)。
用心算簡單的題目,必要時動一動筆也不是不行(你是寫名字或是寫一個字母沒有人去區(qū)分)。 2.在分?jǐn)?shù)上也是每分必爭。
你得到89分與得到90分,雖然只差1分,但是有本質(zhì)的不同,一個是不合格一個是合。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁面生成時間:2.812秒